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Improvement of a Numerical Procedure for the Dynamic
Analysis of Aircraft Structures

Silvano Tizzi*
University of Rome “La Sapienza,” 00184 Rome, Italy

A new model (n.m.) of a numerical procedure, which lies between Rayleigh-Ritz and the finite element method
(FEM), previously applied for three-dimensional aircraft structures, has been developed to improve the accuracy
of the natural frequency values obtained by the old model (0.m.) of this proposed method (PM). The basic charac-
teristic of this n.m. consists in utilizing local describing functions defined in each single-plate component element
together with the global describing ones, defined in all of the space containing the structure, already employed in
the o.m. of PM. First, an application of both models to the same tail structure of previous work has been performed
for a preliminary comparison between their results. Two further applications of both models to wing and tail struc-
tures have been performed. These analyses used a sequence of flat trapezoidal thin plates in a three-dimensional
space, connected only in a serial form along the cantilever’s length. The analyses were performed with a higher
number of component elements than in previous work. A comparison between the results of the two models has
been repeated to show the higher accuracy of the vibration frequency values obtained thanks to this n.m., which
become more evident as the complexity of the structure grows. The advantages of this n.m. of the PM, particularly
with respect to the CPU time, have been pointed out comparing the obtained results also with the ones of a classical
FEM numerical program, such as MSC/NASTRAN.
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Nomenclature
= in-plane rigidity modulus

elasticity modulus

= parameter containing the elasticity

modulus
occurring integrals obtained by the
local describing functions

= shear rigidity modulus
= global describing functions

coefficients of the generic variable S,

= nondimensional plate thickness

plate thickness

stiffness matrix

cantilever’s length of the generic plate
reference length

= nondimensional cantilever’s length of

the generic plate

local describing functions coefficients
of the generic variable S, in the /,th
panel

= mass matrix
= number of Lagrangian degrees of

freedom

number of global describing functions
along the axes X, Y, Z, respectively
number of local describing functions
along X, and Y}, respectively
occurring mixed integrals obtained by
the coupling between global and local
describing functions

= occurring integrals obtained by the

global describing functions

= generic Lagrangian degree of freedom
= rotation matrix element connecting

the axis X; with the axis X;;

= generic independent variable
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Subscripts
iaa i},, lu jaa jha jc

Lrs Jss lers Jes

n I, \)

iea,iebs "iea,iebs ®jea,jeb

X, Y, Z

X, Y. 2

= nondimensional displacements along
the axes of the main reference system

= nondimensional displacements along
the axes of the local reference system

= displacements along the axes of the
main reference system

= displacements along the axes of the
local reference system

= nondimensional coordinates of the
main reference system

= nondimensional coordinates of the
local reference system

= main reference system

local reference system

discriminating parameter

Kronecker’s delta

= rotations along the coordinates of the
local reference system

= rotations along the coordinates of the
main reference system

= mass density

= angular frequency

= nondimensional frequency parameter

= symbols referring to the coefficients of
the global describing functions

= symbols referring to the Lagrangian
degrees of freedom corresponding to
the global and local describing
functions, respectively

= symbols referring to the generic
independent variable

= symbols referring to the coefficients of
the local describing functions

= symbols referring to the rotations
around the axes of the local reference
system

= symbols referring to the rotations
around the axes of the main reference
system



Superscripts

(Ip) = symbol referring to the identification
number of the /,th panel
(n), (r), (s) = symbol referring to the generic
independent variable
Introduction

O increase the accuracy of the obtained results, an improve-

ment of the numerical model of a procedure' ™ utilized for the
dynamic analysis of three-dimensional aircraft structures has been
performed. This improved procedure arises from the Rayleigh-Ritz
method,>® and it is obtained combining the Ritz analysis with the
variationalprinciples,”® like the finite element method (FEM).!0~ 13
This furtherimprovementconsistsin utilizinglocal describing func-
tions together with the global existing ones in the old model (0.m.),
as shown in the previous work.* Local describing functions are very
familiar in the static and dynamic analysis of the structures, if we
consider that the classical and currently applied FEM uses these
between grid points.

An interesting and sophisticated technique of FEM, commonly
called p-convergence elements method,'> uses grid points on the
boundaries of each structural element and series expansions of hi-
erarchic local describing functions, where the coefficients have no
physical meaning. The interpolation functions in that approach are
both Lagrangian and Hermitian.!%3

From a mathematical point of view, these specific techniques,
p-convergenceelements and proposed method (PM), are very simi-
lar. Both use polynomial power series expansions with a degree that
can increase indefinitely. However, there is a basic characteristic
that distinguishes this method from all of the numerical approaches
of FEM: in the PM instead of grid points, we have global describ-
ing functions, defined in all of the space containing the structure.
Consequently, there exists only one condition, which can be easily
satisfied, to guarantee the continuity of the independent variables
along the entire structure: the local describing functions vanish at
the boundaries between adjacent elements. As in the Ritz method
in nonhomogeneous boundary-value problems, there exists a pos-
sibility of employing describing functions satisfying homogeneous
boundaryconditions,togetherwith others that satisfy the true bound-
ary conditions.

With the introduced functions one can determine by an analytical
way all of the integrals that appear in the strain and kinetic energy
expressionsto form the stiffness and mass matrices. The elements of
these matrices corresponding to the coefficients only of the global
describing functions, which appear also in the o.m. of PM, have
been computed in the previous work, where all of the numerical
operations have been sufficiently illustrated. Therefore we omitted
repeating them again.

By minimizing then the total energy,” one reaches the general-
ized eigenvalue problem, the solution of which is found by three
new algorithms FO7FDF, FO8SEF, and FO2FCF of the Numerical
Algorithms Group, Inc. (NAG)' utility package, where FO7FDF
computes the Cholesky factorization of the mass matrix, FOSSEF
reduces a generalized eigenproblem Az = ABz to the standard form
Cy = Ay, and FO2FCF computes the selected eigensolutions.

Rotation Relations and the Local Describing Functions

The rotation relations, previously used and explained;* will be
briefly recalled. A plate element in the space of the main reference
system is shown in Fig. 1.

A local plate reference system x;, y;, z; is introduced, with the
axis y, parallel to the axis y, which is connected with the main
reference system x, y, z via the following relations:

X; =Xy + R;jxj, i=1,2,3, j=1,2,3 (la)
where
X =X, X2 =Y, X3 =2, Xo1 = Xo, Xo2 = Yo
Xo3 = 2o, X = Xg, Xi2 = Vi, x3 =z (1b)
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Fig. 1 Plate element in the main reference system x, y, z.

and R;; are the rotation matrix elements. We introduce a nondimen-
sional local coordinates system X, Y, Z;:

X, =x;/ Ly, Y, = /Ly, Z =zlLy 2)
and X;; =x;;/ Ly, where L is a reference length.

Another nondimensional reference system X, Y, Z, which co-
incides with x,y,z but with a scale factor 1/L,, that is,
X =x/Ly, Y =y/Ly, Z=2z/Ly, and X; =x;/ Ly, is also utilized.
Obviously, the two nondimensional reference systems X, ¥, Z and
X, Y, Z; are connectedby the same rotationrelations (1a). Also the
cantilever’s plate length L along the axis X, and the plate thickness
h' can be reformulated in nondimensional form, as L =L/ L, and
h=n/L,.

By using the rotationrelations (1a) and the natural reference sys-
tem &, n,>%13 it is then possible to evaluate the integral:

Xi“ Yi/) Ziu X;M Yliz/) ht dS,
N

t=1,3
3)

the knowledge of which is necessary to determine the occurring
integrals that appear in the expressions of the strain and kinetic
energy (see the Appendix).

The displacements u;, v;, w;, along the axes x;, y;, z;, respec-
tively, can be written in terms of the corresponding ones u, v, w
along the axes x, y, z, respectively, as

It(laa Iy Les Legs leb) =]

u; = Rjuj, i=1,2,3 j=12,73 (4a)
where
Uy =uy, Up =Vvy, Uz =wp
u, =u, U, =v, Uy =w (4b)

We introduce the nondimensional displacements U, V, W along
X, Y, 2t

U =ul/L,, V =v/L,, W =w/L, (5)
and U;, V;, W, the correspondingones along x;, y;, z;:
Uy =u/ Ly, Vi =v,/Ly, W, =w,/Ly (6)
and U;; =uy;/ L.

Obviously the relations between U, V;, W, and U, V, W are the
same as in Eq. (4a).

Then the rotations 6y, 6y, 6, around the axes y;, x;, z;, respec-
tively, are introduced (the rotation 6y around y, is clockwise,
whereas the others are anticlockwise), which are connected with
the rotations 6., 6,, 6, around the axes x, y, z, respectively, by the
same relations as in Eq. (4a):

@iszieja i=1,2,3,

ji=123 (7a)



146

where
0, = 6y,
91 = 9,\"

O, = —b, 0; =06,
6 =0, 6 =0, (7b)

The generic independent variable S, expression vs the global de-
scribing functions, defined in all of the space containing the struc-
ture, and the local describing functions, defined only in a single
constituting plate element, can be written as

(n) ayib 7ic (Up) ica yieh ¢ T
n = Z gz:l/;zLXl Yz + Z lnul’uwa; Yll/(L - 6X))

iaipic ieaich
i, =0,1,2,...,N,— 1

i.=0,1,2,...,N.—1 (8a)

considering that the clamped edge is supposed at X =0, and

ea = la 2a ~-Neaa ieh =0a 1a2~-Neb -1

Niecaiecb = NeaNeb(n - 1) + (iea - I)Neb + ieb +1

Ip =1,2,~~~’Npancls (8b)

where S, correspondsto U, V, W, 6,, 0,, 0. forn =1,2, ..., 6,1e-
spectively, and [, is the identification number of the generlc panel
considered, which at most is equal to the total number Np,ne;; of
panels.

The parameter 6, is equal to 0 if the edge BC of the plate in Fig. 1
is free, whereas it is equal to 1 if the edge BC lies on a boundary

with another adjacent element.

Mathematical Model

The expressions of the strain and kinetic energy, which are
well-known > depend on products between the independent vari-
ables and their first derivatives in the local reference system.

These variablescan be transferredinto the main reference system
by the rotation relations (4a) and (7a), and taking into account the
expression (8a), can be written in the form:

n L. Ip . .
n = Z g( ) “P(la’ lp, lt‘) + Z lr(l,:[, ,E/)e(leaa leh) (921)

lalple

iqipic iearich
where

P(ig, iy, ip) = XYV Z", e(ieas i) = X[“(L = 8, X))}

(9b)

The first derivative of the generic independent variable can be
expressed as

(n) (Ip) . .
- Z gl:llbh Ly, lha lt) + Z ln,':[,_,'w eu(leaa leb)
0 Xlu

iaipic iealel

u=1,2 (10)

where from the rotation relations (1a) we have
0Py, ip, i)
a Xlu

XP(iy — &1, 1p — G2, i — 83),

P, (iipi,) = =(ia81 + 062 +i.63) R,

i=1,2,3 (11)
and

ae(iea 9 ieb)

— (Ciuleim =G _ @Ciulxlim +1—5ul) Yliz/;—f%z
aXlu

(12a)

€y (iea’ ieh) =

with
Ciy = [1 + (iea - 1)5u1][1 + (ieb - 1)5u2]
Ciul = (1 + ieaéul)[l + (ieh - 1)5u2] (lzb)

In the expressions of in-plane and out-of-plane flexural-torsional
strain energy, there are products between the independent variables
first derivatives:

r 99 " G
P, P,
X, X, =D D g g Puia iy, i) Pu(jas o Jo)

iaipic jajbjc
(r) (Ip) PRI . .
+ Z Z mlb“ &,m Jeb Pu(lalhlf)ev(]eaa Jeb)
iqipic icaieb
(Ip) (&)
+1r,'m_,'w Jajbjc u(lcaa LI))P (]a]h]a)]

Ip) (Ip . . i i
+ Z Z lr,m ioh &,M Jeb eu(leaa lelz)ev(]eaa ]eh)

ieaieh jea jeb

r,s =1,2,3 — in-plane, r,s =4,5,6 — out-of-plane

u,v=1,2 (13)
In the out-of-planeshear-strainenergy expression there are prod-

ucts between independent variables and their first derivatives, such
as

So=2> D8 8 Puliy.ip. i) P(fas Jsn Jo)

iaipic jajbje

(r) (1,) N . .
+ Z Z [ lL:l/)lL &,EIH Jeb Pu(lalhlf)e(Jeaa ]eb)

iqipic icaieb

aXlu

(Ip) s
+1 o () eu(lcaa Ll:)P(]a’ ]ha JL)]

Tica.ieh 8 ja b e

(1,, (Ip . . . .
+ Z Z Tiea,ig) &,M Jeb eu(leaa lelz)e(]ea’ Jeh)

ieaieh jea jeb

r=123 s=456 u=12 (14)

and its dual expression:

) 6 S S
= e g Plia iy i) Py(fas Jsn Jo)

aXlL
iaibic jajb je
(,) (Ip) ? 1.7 ] ]
+ 3 [ P i)
iqipic leaieh

Iy s
+1,) 8 eliear ien) P s i) |

Tica.ieh 8 ja b e

(1p (Ip
+ Z Z Tiea,ig) &,M ,E/)e(lna’ Lb)e (JLG’ Jcb)

icaieb Jeajeb

r=4,56, s=123 v=12 (15

In the out-of-plane shear-strain and kinetic-energy expressions,
products between independent variables appear, as shown:

= gl 8 Plig, iy, i) P(jas Jos Jo)

iaipic ja jbjc
O L. ..
+ Z Z [ Bigipic ‘/ea /z/;P(l“l”l")e(]"”’J"”)
iaipic leaich

(Ip) (s) . . ..
+ l"igla.iw gjj,jbjue(leaa lelz)P(]a’ Jbs JL)]

(1,, (Ip . . i i
+ Z Z Tiea,ig) &,M ,E/)e(lea’ lelz)e(]ea’ ]eh)

icaieb Jeajeb

r,s =4,5,6 — rotations

(16)

r,s =1,2,3 — displacements,



In Eqgs. (13-16) the first terms on the right-hand side give the
contributions due only to the global describing functions, previ-
ously consideredin the 0.m.* New contributions are brought by the
coupling between global and local functions, as the second and third
terms (the one of which is the dual of the other), and only by the
local describing functions, as the fourth terms.

Thus the strain energy expression can be determined vs the
Lagrangian degrees of freedom and written in the classical form:

1
=5 Zkijqiqj an

where k; ; are the elements of the stiffness matrix K (see the Ap-
pendix) and the generalizeddegree of freedom (DOF) ¢, , if we refer
to the series expansion (9a), can be defined as follows:

a =g, (18a)
for
i <N*, N*=6N,N,N. (18b)
and

i =i, — )N,N, +i,N. +i.+(n—1DN/6)+1 (I8¢

as in the o.m., whereas for

N*<i<N (18d)
we have
=", (18¢)
and
i=N"+(, = 16NN + iy ies (181)

Also the total kinetic energy can be expressed vs the Lagrangian
DOF, as

1

wherem;; are the elements of the mass matrix M (seethe Appendix).
At last, by minimizing the total energy,”~® we arrive at the general-
ized eigenvalue problem:

(K —o®M)Q =0 (20)

the solution of which is found by appropriate algorithms.

Applications

Two new different cases of multipanel aircraft structures in a
three-dimensional space have been considered. The internal struc-
ture of the vibrating panels now is the same of the cases previously
examinated for the o.m. application; with a linear chordwise vari-
ation of the thickness. Its value at the trailing edge is twice the one
at the leading edge.

The first case refers to a wing structure as in Fig. 2, with four
component elements. The first couple of them lie on the aircraft
plane, the third one is a little inclined with respect to them, whereas
the fourth element with higherinclination,at the end of the spanwise
wing structure, could be a typical winglet.

In Fig. 2a the flattened structure is sketched, whereas the true
positioning of the plates in a three-dimensional space is shown in
Fig. 2b. A sample of the grid mesh, corresponding to N =828, is
depicted in Fig. 2c.

A tail structure with three component elements identical to the
ones previously utilized for the o.m. application; but with an added
fourth vertical element above the horizontal control surfaces (con-
taining the pitch elevators), which is useful to increase the aircraft
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(b) 9,10

Fig. 2 Wing structure: a) flattened wing structure in the first case,
b) true positioning of the plates, and ¢) a grid mesh of the utilized FEM
model.

h,=0.075L,

50 hye +4ﬁ/ o3 |

1 ‘ zhn/s

Fig. 3 Tail structure in the second case considered, together with c) a
grid mesh of the FEM model.

hos

lateral stability, is then analyzed. All of the component plate el-
ements are sketched in Fig. 3a, and a trimetric view of the same
structure in a threedimensional space is shown in Fig. 3b. A sam-
ple of the grid mesh, corresponding to N =864, is depicted in
Fig. 3c.

Results

The tables show the values of the nondimensional frequency pa-
rameter

of = a*(pL}/ E)

The results obtained by both models of PM from the dynamic
analysis of the tail structure, previously considered for the o.m.
application,* are shown in Table 1. Table 2 shows the numerical test
matrix of both models, which specifies the number of global and lo-
cal describing functions coefficients vs the number N of Lagrangian
DOF. The reason that the CPU times requested by the o.m. are much
smaller than the corresponding ones in the previous work* is that
three more efficient numerical eigensolver algorithms are used in-
stead of the old FO2BJf of the NAG utility package.'* Unfortunately,
these new algorithmsare notable to eliminate the convergenceprob-
lems, for which is not possible to increase the number N of DOF
beyond N =360, because no reliable results can be obtained over
such a limit.

We can notice that the values (CV) toward which both the PM and
FEM results converge approximately, which were obtained by poly-
nomial extrapolation with the 0.m.,* can be obtained by numerical
way with this new model (n.m.).

Theresultsof FEM and also the modal shapes of this particulartail
structure have been already determined and shown in the previous
work,* and consequently it is not necessary to report them again.

Then the results of the two new cases have to be examinated.
Table 3 refers to the first one with a multipanel composed wing
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Table 1 Vibration frequencies obtained in a previously considered case

Numerical parameters PM (0.m.) PM (n.m.) (6\Y
N 300 360 924 936 948 —_—
CPU's. 5.42 8.01 36.25 44.64 55.03 e
First VM 0.03758 0.03757 0.03756 0.03756 0.03756 0.03756
Second VM 0.1022 0.1021 0.1021 0.1020 0.1020 0.1020
Third VM 0.1176 0.11757 0.1176 0.1175 0.1175 0.1175
Table2 PM numerical test matrix in a previously 9725 T T T . . ; T
considered case ppt.datt o
N Ny Ny Ne Nea Nep 872
n.m.
924 1 10 1 6 6 8718
936 1 12 1 6 6
948 1 14 1 6 6 o 971
o.m. ';é
300 5 5 2 —_ _
360 5 6 2 — — s:700
9.7
8.23 T T T T T T 9.695
"pp.dat’ ¢

wg.10%

0 0.2 04 0.6 0.8 1 1.2 1.4
(1/N).10%

Fig. 4 Behavior of the third frequency obtained by the FEM vs 1/N in
the first case considered.

structure. The frequency values indicated have been obtained both
by the PM and the FEM, using a MSC/NASTRAN! program (ver-
sion 70 and with lumped-mass formulation). The bidimensional
plate elements used in the MSC/NASTRAN program are QUADA4,
with linear isoparametric variation of the thickness over their
surfaces.

The FEM numerical test matrix that specifies the number of ele-
ments into which all of the plate component elements are divided,
spanwise and chordwise, with their indicative number, is reported
in Table 4. In Table 4 the PM (n.m.) numerical test matrix is shown,
whereas the corresponding one of the o.m. is written in Table 2.

The frequency results of PM (n.m.) converge very quickly toward
their limit values, and for this reason it is not necessarily a graphical
test of their behavior vs 1/N. Also, the values obtained by FEM
converge quickly toward those of PM, except the third frequency
of the first torsional vibrating mode, for which it is useful to look
at the Fig. 4, which gives its behavior vs 1/N. The data points,
corresponding to the results of Table 3 obtained by FEM, appear
in Fig. 4 as dots. From a careful analysis one can notice that it
converges approximately toward the corresponding value obtained
by the PM (n.m.).

Table 5 shows the same frequency parameter values in the second
case with a tail structure. The FEM and PM (n.m.) numerical test
matrices are shown in Table 6, whereas the corresponding one of
the PM (0.m.) is the same as Table 2. The first and third frequency
values of FEM converge quickly toward the correspondingones of

9.69 L ‘ 1 L 1 1 1
] 0.2 0.4 0.6 1 12 14 18

0.8
(1/N).10%

Fig. 5 Behavior of the second frequency obtained by the FEM vs 1/N
in the second case considered.

T
"pp2.dat’ o

1.868 [ -
1.866 -

1.864 |- -

wg.10

1.862 [ b

1888 . . . : . . .
o 02 04 06 0.8
(1/N).10%

Fig. 6 Behavior of the fourth frequency obtained by the FEM vs 1/N
in the second case considered.

PM (n.m), whereas for the two other frequenciesit is useful to have
an insight into their behavior vs 1/ N, as in Figs. 5 and 6. One can
notice that they converge approximately toward the same values of
PM. In the preceding figures all of the data points that appear as
dots correspond to the FEM results of Table 5 from N =6912 and
over.

The modal shapes obtained by both methods have to be consid-
ered. They have been obtained by dividing the plate component
elements as in the grid mesh shown in Fig. 2¢ in the first case and
in Fig. 3c in the second case. In the same grid points of the FEM
model, the displacements values along the three axes of the main
reference system have been computed by the decribing functions
utilized in the PM (n.m.), and the modal shapes have been built for
a comparison with the ones of FEM.

In Fig. 7, a trimetric view of the undeformed wing structure grid
mesh, the elements of which are reported in Fig. 2c, is sketched,
whereas Figs. 8-11 show the modal shapes obtained by the FEM
a) with N =828 and the PM (n.m.) b) with N =528. In Fig. 12,
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Table 3 Vibration frequencies obtained in the first case

Numerical parameters PM (0.m.) PM (n.m.) FEM

N 300 360 528 546 564 828 1176 1944 3036 6624 11592
CPU's. 6.89 9.70 28.36 33.79 40.83 8.5 10.8 13.8 18.4 40.6 67.6
First VM 0.01995 0.01994 0.01993 0.01993 0.01993 0.01987 0.01989 0.01991 0.01992 0.01993 0.01993
Second VM 0.0562 0.05059 0.05058 0.05058 0.05058 0.05040 0.05049 0.05054 0.05057 0.05058 0.05058
Third VM 0.08210 0.08206 0.08206 0.08203 0.08202 0.08137 0.08151 0.08164 0.08176 0.08187 0.08193
Fourth VM 0.1213  0.1210 0.1208 0.1208 0.1208 0.1204 0.1206 0.1207 0.1207 0.1208 0.1208

Table4 FEM and PM (n.m.) numerical test matrix in the first case

FEM PM

N Span.1 Span.2 Span.3 Span.4 Chord. N N, Np N, Neu Nep

828 10 5 5 3 5 528 3 8 1 4 4

1,176 12 6 6 4 6 546 3 9 1 4 4

1,944 15 8 8 5 8 564 3 10 1 4 4

3,036 20 10 10 6 10 —_ —_ —_ —_ —_ —_

6,624 30 15 15 9 15 —_ —_ —_ —_ —_ —_

11,592 40 20 20 12 20 —_ —_ —_ —_ —_ —_

Table 5 Vibration frequencies obtained in the second case
Numerical parameters PM (0o.m.) PM (n.m.) FEM
N 300 360 924 936 948 864 3,168 6912 9804 12,096 18,720 24,024 26,208 37,440 56,160 112,320
CPU s —_— 17.95 64.55 7694 9241 8.7 19.1 36.0 55.6 62.6 94.9 120.7 131.5 195.2 284.0 587.7
First VM 0.03168 0.03160 0.03158 0.03158 0.03158 0.03145 0.03155 0.03156 0.03157 0.03157 0.03157 0.03157 0.03158 0.03158 0.03158 0.03158
Second VM 0.09734 0.09728 0.09724 0.09723 0.09722 0.09507 0.09668 0.09693 0.09698 0.09700 0.09703 0.097096 0.09712 0.097169 0.097195 0.09721
Third VM 0.1168 0.1166 0.1164 0.1164 0.1164 0.1144 0.1159 0.1161 0.1162 0.1162 0.1163 0.1163 0.1163 0.1163 0.1163 0.1164
Fourth VM 0.18684 0.18678 0.18678 0.18676 0.18674 0.1790 0.1848 0.18586 0.18612 0.18624 0.1864 0.18651 0.18656 0.18665 0.18669 0.18672
Table 6 FEM and PM (n.m.) numerical test matrix in the second case
FEM PM

N Span.1 Span.2 Span.3 Span.4 Chord. N N, Np N. Nea Nep
864 10 5 5 4 5 924 1 10 1 6 6
3,168 20 10 10 8 10 936 1 12 1 6 6
6,912 30 15 15 12 15 948 1 14 1 6 6
9,804 36 18 18 14 18 —_ —_ —_ —_ —_ —_
12,096 40 20 20 16 20 —_ —_ —_ —_ —_ —_
18,720 50 25 25 20 25 —_ —_ —_ —_ —_ —_
26,208 70 35 35 28 25 —_ —_ —_ —_ —_ —_
37,440 100 50 50 40 25 —_ —_ —_ —_ —_ —_
56,150 150 75 75 60 25 —_ —_ —_ —_ —_ —_
112,320 300 150 150 120 25 —_ —_ —_ —_ —_ —_

a trimetric view of the undeformed tail structure grid mesh, the
elements of which are reported in Fig. 3c, is depicted, whereas
Figs. 13-16 show the modal shapes obtained by the FEM a) with
N =864 and the PM (n.m.) b) with N =924.

The reason for which in the same figure the undeformed structure
grid mesh together with the modal shape appearis that it is easier to
characterize the form of the vibrating-mode (VM) shape by looking
at the displacements of the grid points in the main reference system.
One could notice a good agreement between the modal shapes of
the two methods.

Discussion

Now the obtained results will be discussed, and the reason for
chosing these wing and tail structures will be explained. In both
cases, one can emphasize higher convergencerate of this PM if the
n.m. is used, both for lesser CPU time and a lower number N of
Lagrangian DOF. However, another important fact has to be re-
marked. The second case shows a higher complexity of the struc-
Fig. 7 Trimetric view of the undeformed wing structure grid mesh in ture because a couple of elements lie on a plane perpendicular to
the first case considered. the others.
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828 and b) by the PM

Fig. 8 First flexural mode shape corresponding to the first frequency,

obtained in the first case: a) by the FEM with N

with N

=528.

828 and

Fig. 10 First torsional mode shape corresponding to the third fre-

quency, obtained in the first case: a) by the FEM with N

=528.

b) by the PM with N

828 and b)

Fig. 11 Third flexural mode shape corresponding to the fourth fre-

quency, obtained in the first case: a) by the FEM with N

828 and b)

Fig. 9 Second flexural mode shape corresponding to the second fre-

quency, obtained in the first case: a) by the FEM with N

528.

by the PM with N

528.

by the PM with N



L

z

Fig. 12 Trimetric view of the undeformed tail structure grid mesh in
the second case considered.

b)

Fig. 13 First flexural mode shape corresponding to the first frequency,
obtained in the first case: a) by the FEM with N = 864 and b) by the PM
with N = 924.

If the FEM is used in the first case, N =11592 and a CPU time of
67.6 5. are sufficient to obtain for the first torsional mode frequency
(third VM) nearly as an accurate value as the corresponding one of
the first torsional mode frequency (second VM) in the second case
with N =26208 and a CPU time of 131.5 s. Further, in the first case
N =6624 and a CPU time of 40.6 s. are sufficient to obtain for the
fourth frequency a value coincident with the same of PM (n.m.),
whereas in the second case an enormous number N of Lagrangian
DOF and a CPU time of 587.7 s. are necessary to obtain a value of
the fourth frequency nearly coincident with the same of PM (n.m.),
thatis, the requested number of DOF and CPU time to have accurate
values increase with FEM a lot more than with PM, when we pass
from the first to the second case. With this n.m. of PM, we can save
both core storage requirements and CPU time as the complexity of
the structure grows indefinitely.

Furthermore, these advantages become more obvious if
higher-ordervibrationmodes are requested because the CPU time of
the MSC/NASTRAN program increases with the number of eigen-
solutions required much more than the corresponding time of PM.
The number N of DOF grows much more, too.

Unfortunately accurate frequency values cannot be obtained by
the o.m. of PM because of convergence problems, which become
more limitating with the increasing structure complexity.
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Fig. 14 First torsional mode shape corresponding to the second fre-
quency, obtained in the second case: a) by the FEM with N = 864 and
b) by the PM with N = 924.

Fig. 15 Second flexural mode shape corresponding to the third fre-
quency, obtained in the second case: a) by the FEM with N = 864 and
b) by the PM with N = 924.

There are also disadvantages caused by the presence of spurious
solutions particularly in this n.m., for which the eigensolver algo-
rithms waste some of the CPU time to search these unwanted guests.

Moreover there are limits of applicability also of this n.m. be-
cause, like in the o.m., the bidimensional component panels in a
three-dimensional space are considered as plates in a monolithic
fashion with homogeneous and isotropic constituting material and
based on the Mindlin!”"!® theory for the shear behavior. This is
not very realistic considering that the usual mode of construction
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Fig. 16 Third flexural mode (symmetric) shape corresponding to the
fourth frequency, obtained in the second case: a) by the FEM with N =
864 and b) by the PM with N = 924.

of the aircraft structures is the semimonocoque stiffened shell
form.

Future and more sophisticatedeigensolveralgorithms will allow
the saving of the CPU time wasted to find the spurious solutions.

Further more realistic plate models, similar to the ones introduced
by Giles!®?° and Livne?! =2 for planform wing structures with gen-
eral geometry, such as cranked boxes, will allow the application
of this method to true cases of multipanel aircraft structures in a
three-dimensional space, also with nonlinear chordwise thickness
variation.

Conclusions

The effects of the improvement of the utilized model of PM are
evident from a simple analysis of the obtained results. The o.m. ap-
pearsto be excellentfor a limited number of componentelements of
the structures, but gives less accurate frequency values if the com-
plexity of the structure grows indefinitely because of convergence
problems. However, such limits can be overcome by using this n.m.

Further implementation of the numerical program of the intro-
duced procedure is necessary, considering that only idealized plate
models for the component panels of the structures have been uti-
lized. Future applicationsof this method with a more realisticway of
modeling the true internal structure of the flat component elements
will allow it to obtain interesting results for practical utilization.

We can concludeby saying that this alternative procedureto FEM
offers high accuracy, based on the results obtained.

Appendix: Evaluation of the Stiffness and Mass Matrices

In this paper only the integrals where local describing functions
appear will be taken into accountbecause the others with only global
describing functions have already been introduced and evaluated*

In the expressions (13-16) only the first of the two terms of the
coupling between global and local describing functions for the mo-
ment will be considered because the effect of its dual one will be
evaluated when the symmetry of both stiffness and mass matrices
is imposed.
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We introduce the integrals:

Per(iaa iha ica jeaa jeb) =] P(iaa i},, ic)e(jeaa jeb)ht ds
N

t=1,3 (Al

Pue(ia’ iha ica jeaa jeb) =] Pu(iaa iha ic)e(jeaa jeb)h ds
N

u=12 (A2)

Pev(ia’ iha ica jeaa jeb) =] P(iaa iha ic)ev(jea’ jeb)h ds
N

v=12 (A3)

Puevt(iaa iha ica jeaa jeb) =] Pu(iaa i},, ic)ev(jea’ jeb)ht ds
N

u,v =1,2, t=1,3 (A4)

eer(ieaa ieba jeaa jeb) =] e(ieaa ieb)e(jea’ jeb)ht ds
N

t=1,3 (A5

eue(ieaa ieba jeaa jeb) =] eu(ieaa ieb)e(jea’ jeb)h ds
N

u=12 (A6)

euvt(ieaa jeaa ieb’ jeb) =] eu(ieaa iel))ev(jeaa jeb)ht ds
N

u,v =1,2, t=1,3 (A7)

Now the stiffness and mass matrices can be determined. All of
the elements corresponding to the coefficients only of the global
describing functions, which appear also in the o.m. of PM, are not
computed in this paper because they have already been evaluated*
All of the just-mentioned integrals will be used.

First it is necessary to recall six couples of subscripts i,, i, al-
ready introduced and used in the 0.m.,* corresponding to the coef-
ficients of the global describing functions of the independent vari-
ables U, V, W, 0,, 6, 0, forr,s = 1.2...6, respectively. From the
relations (18a) and (18c) we can write

Go=8he =g, re=L26 Gy

where
i, =(i, — )N,N, + i,N, +i. + (r — 1)(N*/6) + 1
Js =(a — DNpNe + j, N, + j. + (s = 1)(N*/6) + 1 (A9)

Then six new couples of subscripts i,,, j.s, corresponding to the
coefficients of the local describing functions of the same indepen-
dent variablesforr, s =1, 2...6, respectively,have to be introduced.
We have from the relations (18e)

_ Up) _ Up) _
Qiey = l’iea.ieb’ Qjes = lS/ea./eb’ rs=12,...,6

(A10)
where from the expressions (8b)
Tieaieco = NeaNep(r — 1) + (ieg = )Ny + iy + 1
Sieajeb = NealNep(s = 1) + (Joa = DNy + jop + 1
leas Jea = 1,2, ooy News  depy Jeo =0,1,2,..., Npy — 1
s =1,2,...,6 (All)

r



and consequently from the relations (18f) one obtains
ier = N* + (Ip - 1)6NeaNeh + Viea,ieb
je,& =N"+ (Ip - 1)6NeaNeh + Sjea,jeb (Alz)

Thus the mixed elements of the stiffness matrix, which arise from
the coupling between global and local describing functions, can
be evaluated. If the series expansions (9a) are substituted into the
out-of-plane and in-plane strain energy expressions;' taking into
account the rotation relations (4a) and (7a), and the first one of the
two coupling terms on the right-handside of Egs. (13-17), and using
the integrals (A2-A4), the corresponding stiffness matrix elements
are determined:

Kiyjoo = Ea L3[R, _32Rs _32(Preis + Via Paa3)
- Rr—3,2Rx—3,l(V12P2el3 + vPo3) — Rr—3,1RS—3,2(V12P1e23
+ VPy13) + R 31 R 31 (Paeas + Vi2 Pr13)]
+ GL?)[(Rr—3,2RS—3,2 + R, _31R,_31]P.
r,s =4,5,6 (Al13)
where
via =(1 = v)/2, Ey =[E/12(1 = V)]
irjes — GL?)Rr3Rx3(Plell + Pyp)
+ AL?)[erRxl(Plell + via Pro1) + R Roy(Via Prer + VPL1)
+ R R (Viz Preay + VPo11) + R Ro(Paar + vip Priy)]
r,s=1,2,3 (Al4)
where
A=E/(1-V)
ki jy = =GLy(=R3R, _3:P1. + R.3R, 5, Py)
r=1,2,3, s=456 (Al5)
ki jo =—=GLy(—=R,_32R;3 Py + R, _31R,3P.)

r=4,56, s=12,3 (Al6)

If the series expansions (9a) are substituted into the expression
of the kinetic energy* and taking into account the first of the two
coupling terms on the right-hand side of Eq. (16) and the integral
(A1), we can determine the mass matrix mixed elements

M, jo, = pLY Py, r=1,23 (Al7)

mi, i, = (pL3[12) P, r=4,56 (Al8)

At last the contributionscaused only by the local describing func-
tions have to be considered. If the local describing functions of the
series expansions (9a) are substituted into the out-of-plane and in-
plane strain energy expressions; the correspondingstiffness matrix
elements can be determined. This takes into account the integrals
(A6) and (A7), the rotation relations (4a) and (7a), and the fourth
terms on the right-hand side of Egs. (13), (14), and (16). The con-
tribution of the Eq. (15), dual of Eq. (14), will be taken into account
when the stiffness matrix symmetry is imposed. Thus we have

_ 3
kmj” = EIZL()[Rr—3,2Rx—3,2(€113 + vipens)

=R, 3R, _31(Viea13 + vens)

=R, _31Ry _32(vizens + vers) + R _31R _31(exn3

+ vizerz)] + GL?)(Rr—3,2RS—3,2 + R, _31R;_3)1)e.

rs =4,56, r<s (Al19)
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k = GL?)Rr3Rx3(€111 +eyp) + EvL?)[erRxl(elll + Vizeyn))

ier jes
+ R Rp(vizey + vern) + R Ry (visen) + veyny)

+ RaRp(exn + vinenn)], r,s =1,2,3, r<s

(A20)

k = _GL?)[_Rr3RX—3,2€1e + R.3R,_; €]

ier jes

r=1,2,3, s=4,56 (A21)
If the local describing functions of the series expansions (9a)
are substituted into the kinetic energy expression; and taking into
account the fourth term on the right-hand side of Eq. (16) and the

integral (A5), we can determine the mass matrix elements
m =pLe,, r=1,2,3 (A22)

ler Jer

Mo = (PLy/12)ec, r=4,56  (A23)
At last the symmetry of both stiffness and mass matrices has to be
imposed, thus also the dual elements of the ones already determined

can be evaluated:

k; =k (A24)
m, =my (A25)
i=1,N-1,  j=i+1N
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