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Improvement of a Numerical Procedure for the Dynamic
Analysis of Aircraft Structures
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A new model (n.m.) of a numerical procedure, which lies between Rayleigh–Ritz and the � nite element method
(FEM), previously applied for three-dimensional aircraft structures, has been developed to improve the accuracy
of the natural frequency values obtained by the old model (o.m.) of this proposed method (PM). The basic charac-
teristic of this n.m. consists in utilizing local describing functions de� ned in each single-plate component element
together with the global describing ones, de� ned in all of the space containing the structure, already employed in
the o.m. of PM. First, an applicationof both models to the same tail structure of previous work has been performed
for a preliminary comparison between their results. Two further applicationsof both models to wing and tail struc-
tures have been performed. These analyses used a sequence of � at trapezoidal thin plates in a three-dimensional
space, connected only in a serial form along the cantilever’s length. The analyses were performed with a higher
number of component elements than in previous work. A comparison between the results of the two models has
been repeated to show the higher accuracy of the vibration frequency values obtained thanks to this n.m., which
become more evident as the complexity of the structure grows. The advantagesof this n.m. of the PM, particularly
with respect to the CPU time, have been pointed out comparing the obtained results also with the ones of a classical
FEM numerical program, such as MSC/NASTRAN.

Nomenclature
A = in-plane rigidity modulus
E = elasticity modulus
E12 = parameter containing the elasticity

modulus
eet , eue, euevt = occurring integrals obtained by the

local describing functions
G = shear rigidity modulus
g(n)

ia ib ic , g(r )
ia ibic ,g ja jb jc

(s ) = global describing functions
coef� cients of the generic variable Sn

h = nondimensionalplate thickness
h 0 = plate thickness
K = stiffness matrix
L = cantilever’s length of the generic plate
L0 = reference length
L̄ = nondimensional cantilever’s length of

the generic plate
l ( I p )
niea , ieb , l ( I p )

riea , ieb , l ( I p )
s jea , jeb = local describing functions coef� cients

of the generic variable Sn in the I pth
panel

M = mass matrix
N = number of Lagrangian degrees of

freedom
Na , Nb , Nc = number of global describing functions

along the axes X , Y, Z , respectively
Nea , Neb = number of local describing functions

along X l and Yl , respectively
Pet , Pue, Pev , Puevt = occurring mixed integrals obtained by

the coupling between global and local
describing functions

PPt , Pu P , Puvt = occurring integrals obtained by the
global describing functions

qi = generic Lagrangian degree of freedom
Ri j = rotation matrix element connecting

the axis X i with the axis X l j
Sn , Sr , Ss = generic independent variable
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U, V , W ; U1 , U2 , U3 = nondimensionaldisplacements along
the axes of the main reference system

Ul , Vl , Wl ; Ul1, Ul2, Ul3 = nondimensionaldisplacements along
the axes of the local reference system

u, v , w ; u1, u2 , u3 = displacements along the axes of the
main reference system

ul , vl , w l ; ul1, ul2, ul3 = displacements along the axes of the
local reference system

X, Y, Z ; X1, X2 , X3 = nondimensional coordinates of the
main reference system

X l , Yl , Zl ; X l1 , X l2 , X l3 = nondimensional coordinates of the
local reference system

x , y, z; x1 , x2 , x3 = main reference system
xl , yl , zl ; xl1, xl2, xl3 = local reference system
d b = discriminating parameter
d i j = Kronecker’s delta
h Y , ¡ h X , h Z ; h l1; h l2 . h l3 = rotations along the coordinates of the

local reference system
h x , h y ; h z ; h 1 , h 2, h 3 = rotations along the coordinates of the

main reference system
q = mass density
x = angular frequency
x d = nondimensional frequency parameter

Subscripts

ia , ib , ic; ja , jb , jc = symbols referring to the coef� cients of
the global describing functions

ir , js ; ier , jes = symbols referring to the Lagrangian
degrees of freedom corresponding to
the global and local describing
functions, respectively

n, r, s = symbols referring to the generic
independent variable

ni ea ,ieb , riea,i eb , s j ea , j eb = symbols referring to the coef� cients of
the local describing functions

X, Y, Z = symbols referring to the rotations
around the axes of the local reference
system

x , y, z = symbols referring to the rotations
around the axes of the main reference
system
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Superscripts

( I p) = symbol referring to the identi� cation
number of the I pth panel

(n), (r ), (s) = symbol referring to the generic
independent variable

Introduction

T O increase the accuracy of the obtained results, an improve-
ment of the numerical model of a procedure1 ¡ 4 utilized for the

dynamic analysis of three-dimensional aircraft structures has been
performed.This improved procedurearises from the Rayleigh–Ritz
method,5,6 and it is obtained combining the Ritz analysis with the
variationalprinciples,7 ¡ 9 like the � niteelementmethod (FEM).10 ¡ 13

This further improvementconsists in utilizinglocal describingfunc-
tions together with the global existing ones in the old model (o.m.),
as shown in the previouswork.4 Local describingfunctionsare very
familiar in the static and dynamic analysis of the structures, if we
consider that the classical and currently applied FEM uses these
between grid points.

An interesting and sophisticated technique of FEM, commonly
called p-convergence elements method,13 uses grid points on the
boundaries of each structural element and series expansions of hi-
erarchic local describing functions, where the coef� cients have no
physical meaning. The interpolation functions in that approach are
both Lagrangian and Hermitian.10,13

From a mathematical point of view, these speci� c techniques,
p-convergenceelements and proposed method (PM), are very simi-
lar. Both use polynomialpower series expansionswith a degree that
can increase inde� nitely. However, there is a basic characteristic
that distinguishesthis method from all of the numerical approaches
of FEM: in the PM instead of grid points, we have global describ-
ing functions, de� ned in all of the space containing the structure.
Consequently, there exists only one condition, which can be easily
satis� ed, to guarantee the continuity of the independent variables
along the entire structure: the local describing functions vanish at
the boundaries between adjacent elements. As in the Ritz method
in nonhomogeneous boundary-value problems, there exists a pos-
sibility of employing describing functions satisfying homogeneous
boundaryconditions,togetherwith othersthat satisfythetruebound-
ary conditions.

With the introducedfunctionsone can determine by an analytical
way all of the integrals that appear in the strain and kinetic energy
expressionsto form the stiffnessand mass matrices.The elementsof
these matrices corresponding to the coef� cients only of the global
describing functions, which appear also in the o.m. of PM, have
been computed in the previous work, where all of the numerical
operations have been suf� ciently illustrated. Therefore we omitted
repeating them again.

By minimizing then the total energy,9 one reaches the general-
ized eigenvalue problem, the solution of which is found by three
new algorithms F07FDF, F08SEF, and F02FCF of the Numerical
Algorithms Group, Inc. (NAG)14 utility package, where F07FDF
computes the Cholesky factorization of the mass matrix, F08SEF
reduces a generalizedeigenproblem Az = k Bz to the standard form
Cy = k y, and F02FCF computes the selected eigensolutions.

Rotation Relations and the Local Describing Functions
The rotation relations, previously used and explained,4 will be

brie� y recalled. A plate element in the space of the main reference
system is shown in Fig. 1.

A local plate reference system xl , yl , zl is introduced, with the
axis yl parallel to the axis y, which is connected with the main
reference system x , y, z via the following relations:

xi = xoi + Ri j xl j , i = 1, 2, 3, j = 1, 2, 3 (1a)

where

x1 = x, x2 = y, x3 = z, xo1 = xo , xo2 = yo

xo3 = zo , xl1 = xl , xl2 = yl , xl3 = zl (1b)

Fig. 1 Plate element in the main reference system x, y, z.

and Ri j are the rotationmatrix elements. We introducea nondimen-
sional local coordinates system X l , Yl , Z l :

X l = xl / L0 , Yl = yl / L0, Zl = zl / L0 (2)

and X li = xli / L0 , where L0 is a reference length.
Another nondimensional reference system X, Y, Z , which co-

incides with x, y, z but with a scale factor 1/ L0 , that is,
X = x / L0, Y = y / L0, Z = z / L0 , and X i = xi / L0, is also utilized.
Obviously, the two nondimensional reference systems X, Y, Z and
X l , Yl , Zl are connectedby the same rotationrelations (1a). Also the
cantilever’s plate length L along the axis X l and the plate thickness
h 0 can be reformulated in nondimensional form, as L̄ = L / L0 and
h = h 0 / L0.

By using the rotation relations (1a) and the natural referencesys-
tem n , g , 3,4,15 it is then possible to evaluate the integral:

It (ia , ib , ic, iea , ieb) = *
S

X ia Y ib Z ic X iea
l Y ieb

l h t dS, t = 1, 3

(3)

the knowledge of which is necessary to determine the occurring
integrals that appear in the expressions of the strain and kinetic
energy (see the Appendix).

The displacements ul , vl , w l , along the axes xl , yl , zl , respec-
tively, can be written in terms of the corresponding ones u, v, w
along the axes x , y, z, respectively, as

u li = R ji u j , i = 1, 2, 3, j = 1, 2, 3 (4a)

where

ul1 = ul , ul2 = vl , ul3 = w l

u1 = u, u2 = v , u3 = w (4b)

We introduce the nondimensional displacements U, V , W along
x , y, z:

U = u / L0, V = v / L0 , W = w / L0 (5)

and Ul , Vl , Wl the correspondingones along xl , yl , zl :

Ul = ul / L0 , Vl = vl / L0 , Wl = w l / L0 (6)

and Uli =uli / L0 .
Obviously the relations between Ul , Vl , Wl and U , V , W are the

same as in Eq. (4a).
Then the rotations h X , h Y , h Z around the axes yl , xl , zl , respec-

tively, are introduced (the rotation h X around yl is clockwise,
whereas the others are anticlockwise), which are connected with
the rotations h x , h y , h z around the axes x , y, z, respectively, by the
same relations as in Eq. (4a):

h li = R ji h j , i = 1, 2, 3, j = 1, 2, 3 (7a)
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where

h l1 = h Y , h l2 = ¡ h X , h l3 = h Z

h 1 = h x , h 2 = h y , h 3 = h z (7b)

The generic independentvariable Sn expressionvs the global de-
scribing functions, de� ned in all of the space containing the struc-
ture, and the local describing functions, de� ned only in a single
constituting plate element, can be written as

Sn = ^
ia ib ic

g(n)
ia ibic

X ia Y ib Z ic + ^
iea ieb

l
( I p )
n iea , ieb X iea

l Y ieb
l ( L̄ ¡ d b X l )

ia = 1, 2, . . . , Na , ib = 0, 1, 2, . . . , Nb ¡ 1

ic = 0, 1, 2, . . . , Nc ¡ 1 (8a)

considering that the clamped edge is supposed at X =0, and

iea = 1, 2, ..Nea , ieb = 0, 1, 2..Neb ¡ 1

ni ea ,ieb = Nea Neb(n ¡ 1) + (iea ¡ 1)Neb + ieb + 1

I p = 1, 2, . . . , Npanels (8b)

where Sn corresponds to U , V , W , h x , h y , h z for n =1, 2, . . . , 6, re-
spectively, and I p is the identi� cation number of the generic panel
considered, which at most is equal to the total number Npanels of
panels.

The parameter d b is equal to 0 if the edge BC of the plate in Fig. 1
is free, whereas it is equal to 1 if the edge BC lies on a boundary
with another adjacent element.

Mathematical Model
The expressions of the strain and kinetic energy, which are

well-known,3,4 depend on products between the independent vari-
ables and their � rst derivatives in the local reference system.

These variablescan be transferredinto the main referencesystem
by the rotation relations (4a) and (7a), and taking into account the
expression (8a), can be written in the form:

Sn = ^
ia ib ic

g(n)
ia ibic

P(ia , ib , ic) + ^
iea , ieb

l
( I p )
n iea , ieb

e(iea , ieb) (9a)

where

P(ia , ib , ic) = X ia Y ib Z ic , e(iea , ieb) = X iea
l ( L̄ ¡ d b X l )Y

ieb
l
(9b)

The � rst derivative of the generic independent variable can be
expressed as

@Sn

@ X lu
= ^

ia ib ic

g(n)
ia ibic

Pu(ia , ib , ic) + ^
iea ieb

l ( I p )
niea , ieb

eu (iea , ieb)

u = 1, 2 (10)

where from the rotation relations (1a) we have

Pu (ia ibic) =
@P(ia , ib , ic)

@X lu
= (ia d i1 + ib d i2 + ic d i3)Riu

£ P(ia ¡ d i1, ib ¡ d i2 , ic ¡ d i3), i = 1, 2, 3 (11)

and

eu (iea , ieb) =
@e(iea , ieb)

@X lu
= (ciu L̄ X iea ¡ d u1

l ¡ d bciu1 X iea +1 ¡ d u1
l )Y ieb ¡ d u2

l

(12a)
with

ciu = [1 + (iea ¡ 1) d u1][1 + (ieb ¡ 1) d u2]

ciu1 = (1 + iea d u1)[1 + (ieb ¡ 1) d u2] (12b)

In the expressionsof in-plane and out-of-plane� exural-torsional
strain energy, there are products between the independentvariables
� rst derivatives:

dSr

dX lu

dSs

dX lv
= ^

ia ib ic

^
ja jb jc

g(r )
ia ib ic

g(s)
ja jb jc

Pu (ia , ib , ic) Pv ( ja , jb , jc)

+ ^
ia ib ic

^
iea ieb

[g(r )
ia ib ic

l
( I p )
s jea , jeb

Pu(iaibic)ev ( jea , jeb)

+l ( I p )
riea ,ieb

g(s)
ja jb jc

eu(iea , ieb)Pv ( ja jb jc)]

+ ^
iea ieb

^
jea jeb

l
( I p )
riea , ieb

l
( I p )
s jea , jeb

eu (iea , ieb)ev ( jea , jeb)

r, s = 1, 2, 3 ¡ ! in-plane, r, s = 4, 5, 6 ¡ ! out-of-plane

u, v = 1, 2 (13)

In the out-of-planeshear-strainenergy expression there are prod-
ucts between independent variables and their � rst derivatives, such
as

@Sr

@X lu

Ss = ^
ia ibic

^
ja jb jc

g(r )
ia ibic

g(s)
ja jb jc

Pu (ia , ib , ic)P( ja , jb , jc)

+ ^
ia ib ic

^
iea ieb

[g(r )
ia ib ic

l
( I p )
s jea , jeb

Pu (iaibic)e( jea , jeb)

+ l
( I p )
riea ,ieb

g (s)
ja jb jc

eu (iea , ieb)P( ja , jb , jc)]
+ ^

iea ieb

^
jea jeb

l
( I p )
riea , ieb

l
( I p )
s jea , jeb

eu (iea , ieb)e( jea , jeb)

r = 1, 2, 3, s = 4, 5, 6, u = 1, 2 (14)

and its dual expression:

Sr
@Ss

@X lv
= ^

ia ib ic

^
ja jb jc

g(r )
ia ib ic

g (s)
ja jb jc

P(ia , ib , ic) Pv ( ja , jb , jc)

+ ^
ia ib ic

^
iea ieb

[g(r )
ia ib ic

l ( I p )
s jea , jeb

P(iaibic)ev ( jea , jeb)

+ l
( I p )
riea ,ieb

g (s)
ja jb jc

e(iea , ieb)Pv ( ja jb jc)]

+ ^
iea ieb

^
jea jeb

l
( I p )
riea , ieb

l
( I p )
s jea , jeb

e(iea , ieb)ev ( jea , jeb)

r = 4, 5, 6, s = 1, 2, 3, v = 1, 2 (15)

In the out-of-plane shear-strain and kinetic-energy expressions,
products between independent variables appear, as shown:

Sr Ss = ^
ia ib ic

^
ja jb jc

g (r )
ia ib ic

g(s )
ja jb jc

P(ia , ib , ic)P( ja , jb , jc)

+ ^
ia ib ic

^
iea ieb

[g(r )
ia ib ic

l
( I p )
s jea , jeb

P(iaibic)e( jea , jeb)

+ l
( I p )
riea ,ieb

g (s)
ja jb jc

e(iea , ieb)P( ja , jb , jc)]
+ ^

iea ieb

^
jea jeb

l
( I p )
riea , ieb

l
( I p )
s jea , jeb

e(iea , ieb)e( jea , jeb)

r, s = 1, 2, 3 ¡ ! displacements, r, s = 4, 5, 6 ¡ ! rotations

(16)
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In Eqs. (13–16) the � rst terms on the right-hand side give the
contributions due only to the global describing functions, previ-
ously considered in the o.m.4 New contributionsare brought by the
couplingbetweenglobaland local functions,as the secondand third
terms (the one of which is the dual of the other), and only by the
local describing functions, as the fourth terms.

Thus the strain energy expression can be determined vs the
Lagrangian degrees of freedom and written in the classical form:

U T =
1
2 ^

i j

ki j qi q j (17)

where ki j are the elements of the stiffness matrix K (see the Ap-
pendix) and the generalizeddegree of freedom (DOF) qi , if we refer
to the series expansion (9a), can be de� ned as follows:

qi = g(n)
ia ib ic

(18a)

for

i · N ¤ , N ¤ = 6Na Nb Nc (18b)

and

i = (ia ¡ 1)Nb Nc + ib Nc + ic + (n ¡ 1)(N ¤ /6) + 1 (18c)

as in the o.m., whereas for

N ¤ < i · N (18d)

we have

qi = l ( I p )
niea , ieb (18e)

and

i = N ¤ + ( Ip ¡ 1)6Nea Neb + n iea ,ieb (18f)

Also the total kinetic energy can be expressedvs the Lagrangian
DOF, as

T =
1
2

x 2 ^
i j

m i j qi q j (19)

wherem i j are theelementsof themassmatrix M (see theAppendix).
At last, by minimizing the total energy,7 ¡ 9 we arrive at the general-
ized eigenvalue problem:

(K ¡ x 2 M )Q = 0 (20)

the solution of which is found by appropriate algorithms.

Applications
Two new different cases of multipanel aircraft structures in a

three-dimensional space have been considered. The internal struc-
ture of the vibrating panels now is the same of the cases previously
examinated for the o.m. application,4 with a linear chordwise vari-
ation of the thickness. Its value at the trailing edge is twice the one
at the leading edge.

The � rst case refers to a wing structure as in Fig. 2, with four
component elements. The � rst couple of them lie on the aircraft
plane, the third one is a little inclined with respect to them, whereas
the fourthelementwith higher inclination,at the end of the spanwise
wing structure, could be a typical winglet.

In Fig. 2a the � attened structure is sketched, whereas the true
positioning of the plates in a three-dimensional space is shown in
Fig. 2b. A sample of the grid mesh, corresponding to N = 828, is
depicted in Fig. 2c.

A tail structure with three component elements identical to the
ones previouslyutilized for the o.m. application,4 but with an added
fourth vertical element above the horizontal control surfaces (con-
taining the pitch elevators), which is useful to increase the aircraft

Fig. 2 Wing structure: a) � attened wing structure in the � rst case,
b) true positioning of the plates, and c) a grid mesh of the utilized FEM
model.

Fig. 3 Tail structure in the second case considered, together with c) a
grid mesh of the FEM model.

lateral stability, is then analyzed. All of the component plate el-
ements are sketched in Fig. 3a, and a trimetric view of the same
structure in a threedimensional space is shown in Fig. 3b. A sam-
ple of the grid mesh, corresponding to N =864, is depicted in
Fig. 3c.

Results
The tables show the values of the nondimensional frequency pa-

rameter

x 2
d = x 2( q L2

0 / E)

The results obtained by both models of PM from the dynamic
analysis of the tail structure, previously considered for the o.m.
application,4 are shown in Table 1. Table 2 shows the numerical test
matrix of both models, which speci� es the number of global and lo-
cal describingfunctionscoef� cients vs the number N of Lagrangian
DOF. The reason that the CPU times requestedby the o.m. are much
smaller than the corresponding ones in the previous work4 is that
three more ef� cient numerical eigensolver algorithms are used in-
steadof the old F02BJf of the NAG utility package.14 Unfortunately,
thesenew algorithmsarenot able to eliminatethe convergenceprob-
lems, for which is not possible to increase the number N of DOF
beyond N =360, because no reliable results can be obtained over
such a limit.

We can notice that the values (CV) toward which both the PM and
FEM results convergeapproximately,which were obtainedby poly-
nomial extrapolation with the o.m.,4 can be obtained by numerical
way with this new model (n.m.).

The resultsofFEM andalso themodal shapesof thisparticulartail
structure have been already determined and shown in the previous
work,4 and consequently it is not necessary to report them again.

Then the results of the two new cases have to be examinated.
Table 3 refers to the � rst one with a multipanel composed wing
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Table 1 Vibration frequencies obtained in a previously considered case

Numerical parameters PM (o.m.) PM (n.m.) CV

N 300 360 924 936 948 ——
CPU s. 5.42 8.01 36.25 44.64 55.03 ——
First VM 0.03758 0.03757 0.03756 0.03756 0.03756 0.03756
Second VM 0.1022 0.1021 0.1021 0.1020 0.1020 0.1020
Third VM 0.1176 0.11757 0.1176 0.1175 0.1175 0.1175

Table 2 PM numerical test matrix in a previously
considered case

N Na Nb Nc Nea Neb

n.m.
924 1 10 1 6 6
936 1 12 1 6 6
948 1 14 1 6 6

o.m.
300 5 5 2 —— ——
360 5 6 2 —— ——

Fig. 4 Behavior of the third frequency obtained by the FEM vs 1/N in
the � rst case considered.

structure. The frequency values indicated have been obtained both
by the PM and the FEM, using a MSC/NASTRAN16 program (ver-
sion 70 and with lumped-mass formulation). The bidimensional
plate elements used in the MSC/NASTRAN program are QUAD4,
with linear isoparametric variation of the thickness over their
surfaces.

The FEM numerical test matrix that speci� es the number of ele-
ments into which all of the plate component elements are divided,
spanwise and chordwise, with their indicative number, is reported
in Table 4. In Table 4 the PM (n.m.) numerical test matrix is shown,
whereas the correspondingone of the o.m. is written in Table 2.

The frequencyresultsof PM (n.m.) convergevery quickly toward
their limit values, and for this reason it is not necessarilya graphical
test of their behavior vs 1/ N . Also, the values obtained by FEM
converge quickly toward those of PM, except the third frequency
of the � rst torsional vibrating mode, for which it is useful to look
at the Fig. 4, which gives its behavior vs 1/ N . The data points,
corresponding to the results of Table 3 obtained by FEM, appear
in Fig. 4 as dots. From a careful analysis one can notice that it
converges approximately toward the corresponding value obtained
by the PM (n.m.).

Table 5 shows the same frequencyparameter values in the second
case with a tail structure. The FEM and PM (n.m.) numerical test
matrices are shown in Table 6, whereas the corresponding one of
the PM (o.m.) is the same as Table 2. The � rst and third frequency
values of FEM converge quickly toward the correspondingones of

Fig. 5 Behavior of the second frequency obtained by the FEM vs 1/N
in the second case considered.

Fig. 6 Behavior of the fourth frequency obtained by the FEM vs 1/N
in the second case considered.

PM (n.m), whereas for the two other frequencies it is useful to have
an insight into their behavior vs 1/ N , as in Figs. 5 and 6. One can
notice that they converge approximately toward the same values of
PM. In the preceding � gures all of the data points that appear as
dots correspond to the FEM results of Table 5 from N = 6912 and
over.

The modal shapes obtained by both methods have to be consid-
ered. They have been obtained by dividing the plate component
elements as in the grid mesh shown in Fig. 2c in the � rst case and
in Fig. 3c in the second case. In the same grid points of the FEM
model, the displacements values along the three axes of the main
reference system have been computed by the decribing functions
utilized in the PM (n.m.), and the modal shapes have been built for
a comparison with the ones of FEM.

In Fig. 7, a trimetric view of the undeformed wing structure grid
mesh, the elements of which are reported in Fig. 2c, is sketched,
whereas Figs. 8–11 show the modal shapes obtained by the FEM
a) with N = 828 and the PM (n.m.) b) with N = 528. In Fig. 12,
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Table 3 Vibration frequencies obtained in the � rst case

Numerical parameters PM (o.m.) PM (n.m.) FEM

N 300 360 528 546 564 828 1176 1944 3036 6624 11592
CPU s. 6.89 9.70 28.36 33.79 40.83 8.5 10.8 13.8 18.4 40.6 67.6
First VM 0.01995 0.01994 0.01993 0.01993 0.01993 0.01987 0.01989 0.01991 0.01992 0.01993 0.01993
Second VM 0.0562 0.05059 0.05058 0.05058 0.05058 0.05040 0.05049 0.05054 0.05057 0.05058 0.05058
Third VM 0.08210 0.08206 0.08206 0.08203 0.08202 0.08137 0.08151 0.08164 0.08176 0.08187 0.08193
Fourth VM 0.1213 0.1210 0.1208 0.1208 0.1208 0.1204 0.1206 0.1207 0.1207 0.1208 0.1208

Table 4 FEM and PM (n.m.) numerical test matrix in the � rst case

FEM PM

N Span.1 Span.2 Span.3 Span.4 Chord. N Na Nb Nc Nea Neb

828 10 5 5 3 5 528 3 8 1 4 4
1,176 12 6 6 4 6 546 3 9 1 4 4
1,944 15 8 8 5 8 564 3 10 1 4 4
3,036 20 10 10 6 10 —— —— —— —— —— ——
6,624 30 15 15 9 15 —— —— —— —— —— ——
11,592 40 20 20 12 20 —— —— —— —— —— ——

Table 5 Vibration frequencies obtained in the second case

Numerical parameters PM (o.m.) PM (n.m.) FEM

N 300 360 924 936 948 864 3,168 6,912 9,804 12,096 18,720 24,024 26,208 37,440 56,160 112,320
CPU s —— 17.95 64.55 76.94 92.41 8.7 19.1 36.0 55.6 62.6 94.9 120.7 131.5 195.2 284.0 587.7
First VM 0.03168 0.03160 0.03158 0.03158 0.03158 0.03145 0.03155 0.03156 0.03157 0.03157 0.03157 0.03157 0.03158 0.03158 0.03158 0.03158
Second VM 0.09734 0.09728 0.09724 0.09723 0.09722 0.09507 0.09668 0.09693 0.09698 0.09700 0.09703 0.097096 0.09712 0.097169 0.097195 0.09721
Third VM 0.1168 0.1166 0.1164 0.1164 0.1164 0.1144 0.1159 0.1161 0.1162 0.1162 0.1163 0.1163 0.1163 0.1163 0.1163 0.1164
Fourth VM 0.18684 0.18678 0.18678 0.18676 0.18674 0.1790 0.1848 0.18586 0.18612 0.18624 0.1864 0.18651 0.18656 0.18665 0.18669 0.18672

Table 6 FEM and PM (n.m.) numerical test matrix in the second case

FEM PM

N Span.1 Span.2 Span.3 Span.4 Chord. N Na Nb Nc Nea Neb

864 10 5 5 4 5 924 1 10 1 6 6
3,168 20 10 10 8 10 936 1 12 1 6 6
6,912 30 15 15 12 15 948 1 14 1 6 6
9,804 36 18 18 14 18 —— —— —— —— —— ——
12,096 40 20 20 16 20 —— —— —— —— —— ——
18,720 50 25 25 20 25 —— —— —— —— —— ——
26,208 70 35 35 28 25 —— —— —— —— —— ——
37,440 100 50 50 40 25 —— —— —— —— —— ——
56,150 150 75 75 60 25 —— —— —— —— —— ——
112,320 300 150 150 120 25 —— —— —— —— —— ——

Fig. 7 Trimetric view of the undeformed wing structure grid mesh in
the � rst case considered.

a trimetric view of the undeformed tail structure grid mesh, the
elements of which are reported in Fig. 3c, is depicted, whereas
Figs. 13–16 show the modal shapes obtained by the FEM a) with
N = 864 and the PM (n.m.) b) with N = 924.

The reason for which in the same � gure the undeformedstructure
grid mesh togetherwith the modal shape appear is that it is easier to
characterizethe form of the vibrating-mode(VM) shape by looking
at the displacementsof the grid points in the main referencesystem.
One could notice a good agreement between the modal shapes of
the two methods.

Discussion
Now the obtained results will be discussed, and the reason for

chosing these wing and tail structures will be explained. In both
cases, one can emphasize higher convergence rate of this PM if the
n.m. is used, both for lesser CPU time and a lower number N of
Lagrangian DOF. However, another important fact has to be re-
marked. The second case shows a higher complexity of the struc-
ture because a couple of elements lie on a plane perpendicular to
the others.
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a)

b)

Fig. 8 First � exural mode shape corresponding to the � rst frequency,
obtained in the � rst case: a) by the FEM with N = 828 and b) by the PM
with N = 528.

a)

b)

Fig. 9 Second � exural mode shape corresponding to the second fre-
quency, obtained in the � rst case: a) by the FEM with N = 828 and b)
by the PM with N = 528.

a)

b)

Fig. 10 First torsional mode shape corresponding to the third fre-
quency, obtained in the � rst case: a) by the FEM with N = 828 and
b) by the PM with N = 528.

a)

b)

Fig. 11 Third � exural mode shape corresponding to the fourth fre-
quency, obtained in the � rst case: a) by the FEM with N = 828 and b)
by the PM with N = 528.
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Fig. 12 Trimetric view of the undeformed tail structure grid mesh in
the second case considered.

a)

b)

Fig. 13 First � exural modeshapecorresponding to the � rst frequency,
obtained in the � rst case: a) by the FEM with N = 864 and b) by the PM
with N = 924.

If the FEM is used in the � rst case, N =11592 and a CPU time of
67.6 s. are suf� cient to obtain for the � rst torsionalmode frequency
(third VM) nearly as an accurate value as the correspondingone of
the � rst torsional mode frequency (second VM) in the second case
with N = 26208 and a CPU time of 131.5 s. Further, in the � rst case
N = 6624 and a CPU time of 40.6 s. are suf� cient to obtain for the
fourth frequency a value coincident with the same of PM (n.m.),
whereas in the second case an enormous number N of Lagrangian
DOF and a CPU time of 587.7 s. are necessary to obtain a value of
the fourth frequencynearly coincidentwith the same of PM (n.m.),
that is, the requestednumberof DOF and CPU time to have accurate
values increase with FEM a lot more than with PM, when we pass
from the � rst to the second case. With this n.m. of PM, we can save
both core storage requirements and CPU time as the complexity of
the structure grows inde� nitely.

Furthermore, these advantages become more obvious if
higher-ordervibrationmodes are requestedbecausethe CPU time of
the MSC/NASTRAN program increases with the number of eigen-
solutions required much more than the corresponding time of PM.
The number N of DOF grows much more, too.

Unfortunately accurate frequency values cannot be obtained by
the o.m. of PM because of convergence problems, which become
more limitating with the increasing structure complexity.

a)

b)

Fig. 14 First torsional mode shape corresponding to the second fre-
quency, obtained in the second case: a) by the FEM with N = 864 and
b) by the PM with N = 924.

a)

b)

Fig. 15 Second � exural mode shape corresponding to the third fre-
quency, obtained in the second case: a) by the FEM with N = 864 and
b) by the PM with N = 924.

There are also disadvantagescaused by the presence of spurious
solutions particularly in this n.m., for which the eigensolver algo-
rithms waste some of the CPU time to search theseunwantedguests.

Moreover there are limits of applicability also of this n.m. be-
cause, like in the o.m., the bidimensional component panels in a
three-dimensional space are considered as plates in a monolithic
fashion with homogeneous and isotropic constituting material and
based on the Mindlin17,18 theory for the shear behavior. This is
not very realistic considering that the usual mode of construction
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a)

b)

Fig. 16 Third � exural mode (symmetric) shape corresponding to the
fourth frequency, obtained in the second case: a) by the FEM with N =
864 and b) by the PM with N = 924.

of the aircraft structures is the semimonocoque stiffened shell
form.

Future and more sophisticatedeigensolveralgorithms will allow
the saving of the CPU time wasted to � nd the spurious solutions.

Furthermore realisticplatemodels,similar to the ones introduced
by Giles19,20 and Livne21 ¡ 23 for planform wing structureswith gen-
eral geometry, such as cranked boxes, will allow the application
of this method to true cases of multipanel aircraft structures in a
three-dimensional space, also with nonlinear chordwise thickness
variation.

Conclusions
The effects of the improvement of the utilized model of PM are

evident from a simple analysis of the obtained results. The o.m. ap-
pears to be excellentfor a limited numberof componentelementsof
the structures, but gives less accurate frequency values if the com-
plexity of the structure grows inde� nitely because of convergence
problems. However, such limits can be overcome by using this n.m.

Further implementation of the numerical program of the intro-
duced procedure is necessary, considering that only idealized plate
models for the component panels of the structures have been uti-
lized.Future applicationsof thismethodwith a more realisticway of
modeling the true internal structure of the � at component elements
will allow it to obtain interesting results for practical utilization.

We can concludeby saying that this alternativeprocedureto FEM
offers high accuracy, based on the results obtained.

Appendix: Evaluation of the Stiffness and Mass Matrices
In this paper only the integrals where local describing functions

appearwill be taken intoaccountbecausethe otherswith only global
describing functions have already been introduced and evaluated.4

In the expressions (13–16) only the � rst of the two terms of the
coupling between global and local describing functions for the mo-
ment will be considered because the effect of its dual one will be
evaluated when the symmetry of both stiffness and mass matrices
is imposed.

We introduce the integrals:

Pet (ia , ib , ic, jea , jeb) = *
S

P(ia , ib , ic)e( jea , jeb)h t dS

t = 1, 3 (A1)

Pue(ia , ib , ic, jea , jeb) = *
S

Pu (ia , ib , ic)e( jea , jeb)h dS

u = 1, 2 (A2)

Pev (ia , ib , ic , jea , jeb) = *
S

P(ia , ib , ic)ev ( jea , jeb)h dS

v = 1, 2 (A3)

Puevt (ia , ib , ic , jea , jeb) = *
S

Pu (ia , ib , ic)ev ( jea , jeb)h t dS

u, v = 1, 2, t = 1, 3 (A4)

eet (iea , ieb , jea , jeb) = *
S

e(iea , ieb)e( jea , jeb)h t dS

t = 1, 3 (A5)

eue(iea , ieb , jea , jeb) = *
S

eu (iea , ieb)e( jea , jeb)h dS

u = 1, 2 (A6)

euvt (iea , jea , ieb , jeb) = *
S

eu (iea , ieb)ev ( jea , jeb)ht dS

u, v = 1, 2, t = 1, 3 (A7)

Now the stiffness and mass matrices can be determined. All of
the elements corresponding to the coef� cients only of the global
describing functions, which appear also in the o.m. of PM, are not
computed in this paper because they have already been evaluated.4

All of the just-mentioned integrals will be used.
First it is necessary to recall six couples of subscripts ir , is , al-

ready introduced and used in the o.m.,4 corresponding to the coef-
� cients of the global describing functions of the independent vari-
ables U, V , W , h x , h y , h z for r, s = 1.2...6, respectively. From the
relations (18a) and (18c) we can write

qir = g(r )
ia ib ic

, q js = g(s)
ja jb jc

, r, s = 1, 2...6 (A8)

where

ir = (ia ¡ 1)Nb Nc + ib Nc + ic + (r ¡ 1)(N ¤ / 6) + 1

js = ( ja ¡ 1)Nb Nc + jb Nc + jc + (s ¡ 1)(N ¤ /6) + 1 (A9)

Then six new couples of subscripts ier , jes , corresponding to the
coef� cients of the local describing functions of the same indepen-
dent variables for r, s =1, 2...6, respectively,have to be introduced.
We have from the relations (18e)

qier = l
( I p )
riea ,ieb , q jes = l

( I p )
s jea , jeb , r, s = 1, 2, . . . , 6

(A10)
where from the expressions (8b)

riea ,ieb = Nea Neb(r ¡ 1) + (iea ¡ 1)Neb + ieb + 1

s j ea , j eb = Nea Neb(s ¡ 1) + ( jea ¡ 1)Neb + jeb + 1

iea , jea = 1, 2, . . . , Nea , ieb , jeb = 0, 1, 2, . . . , Neb ¡ 1

r, s = 1, 2, . . . , 6 (A11)
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and consequently from the relations (18f) one obtains

ier = N ¤ + (I p ¡ 1)6Nea Neb + riea ,ieb

jes = N ¤ + ( I p ¡ 1)6Nea Neb + s j ea , jeb (A12)

Thus the mixed elements of the stiffnessmatrix, which arise from
the coupling between global and local describing functions, can
be evaluated. If the series expansions (9a) are substituted into the
out-of-plane and in-plane strain energy expressions,4 taking into
account the rotation relations (4a) and (7a), and the � rst one of the
two couplingterms on the right-handsideof Eqs. (13–17), and using
the integrals (A2–A4), the correspondingstiffness matrix elements
are determined:
kir jes = E12 L3

0[Rr ¡ 3,2 Rs ¡ 3,2(P1e13 + m 12 P2e23)

¡ Rr ¡ 3,2 Rs ¡ 3,1( m 12 P2e13 + m P1e23) ¡ Rr ¡ 3,1 Rs ¡ 3,2( m 12 P1e23

+ m P2e13) + Rr ¡ 3,1 Rs ¡ 3,1(P2e23 + m 12 P1e13)]

+ G L3
0[(Rr ¡ 3,2 Rs ¡ 3,2 + Rr ¡ 3,1 Rs ¡ 3,1]Pe1

r, s = 4, 5, 6 (A13)

where

m 12 = (1 ¡ m )/ 2, E12 = [E / 12(1 ¡ m 2)]

kir jes = GL3
0 Rr3 Rs3(P1e11 + P2e21)

+ AL3
0[Rr1 Rs1(P1e11 + m 12 P2e21) + Rr 1 Rs2( m 12 P2e11 + m P1e21)

+ Rr2 Rs1( m 12 P1e21 + m P2e11) + Rr 2 Rs2(P2e21 + m 12 P111)]

r, s = 1, 2, 3 (A14)

where

A = E / (1 ¡ m 2)

kir jes = ¡ G L3
0( ¡ Rr3 Rs ¡ 3,2 P1e + Rr, 3 Rs ¡ 3,1 P2e)

r = 1, 2, 3, s = 4, 5, 6 (A15)

kir jes = ¡ G L3
0( ¡ Rr ¡ 3,2 Rs3 Pe1 + Rr ¡ 3,1 Rs,3 Pe2)

r = 4, 5, 6, s = 1, 2, 3 (A16)

If the series expansions (9a) are substituted into the expression
of the kinetic energy4 and taking into account the � rst of the two
coupling terms on the right-hand side of Eq. (16) and the integral
(A1), we can determine the mass matrix mixed elements

m ir jer = q L5
0 Pe1, r = 1, 2, 3 (A17)

m ir jer = ( q L5
0 / 12) Pe3, r = 4, 5, 6 (A18)

At last the contributionscausedonly by the local describingfunc-
tions have to be considered. If the local describing functions of the
series expansions (9a) are substituted into the out-of-plane and in-
plane strain energy expressions,4 the correspondingstiffnessmatrix
elements can be determined. This takes into account the integrals
(A6) and (A7), the rotation relations (4a) and (7a), and the fourth
terms on the right-hand side of Eqs. (13), (14), and (16). The con-
tributionof the Eq. (15), dual of Eq. (14), will be taken into account
when the stiffness matrix symmetry is imposed. Thus we have
kier jes = E12L3

0[Rr ¡ 3,2 Rs ¡ 3,2(e113 + m 12e223)

¡ Rr ¡ 3,2 Rs ¡ 3,1( m 12e213 + m e123)

¡ Rr ¡ 3,1 Rs ¡ 3,2( m 12e123 + m e213) + Rr ¡ 3,1 Rs ¡ 3,1(e223

+ m 12e113)] + GL3
0(Rr ¡ 3,2 Rs ¡ 3,2 + Rr ¡ 3,1 Rs ¡ 3,1)ee1

r, s = 4, 5, 6, r · s (A19)

kier jes = G L3
0 Rr 3 Rs3(e111 + e221) + E m L3

0[Rr1 Rs1(e111 + m 12e221)

+ Rr1 Rs2( m 12e211 + m e121) + Rr2 Rs1( m 12e121 + m e211)

+ Rr2 Rs2(e221 + m 12e111)], r, s = 1, 2, 3, r · s

(A20)

kier jes = ¡ G L3
0[ ¡ Rr 3 Rs ¡ 3,2e1e + Rr,3 Rs ¡ 3,1e2e]

r = 1, 2, 3, s = 4, 5, 6 (A21)

If the local describing functions of the series expansions (9a)
are substituted into the kinetic energy expression,4 and taking into
account the fourth term on the right-hand side of Eq. (16) and the
integral (A5), we can determine the mass matrix elements

m ier jer = q L5
0ee1 , r = 1, 2, 3 (A22)

m ier jer = ( q L5
0 / 12)ee1, r = 4, 5, 6 (A23)

At last the symmetry of both stiffness and mass matriceshas to be
imposed, thus also the dual elementsof the ones alreadydetermined
can be evaluated:

k ji = ki j (A24)

m ji = m i j (A25)

i = 1, N ¡ 1, j = i + 1, N
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